矩阵连乘(递归法)

  1. /*
  2. * @file RecursiveMatrixChain.cpp
  3. * @brief Martrix Chain
  4. * @author/Univ. taoran
  5. * @version v1.0
  6. * @date 11-3-2013
  7. */
  8. //实例 A1-A6:30X35 35X15 15X5 5X10 10X20 20X25
  9. #include<iostream>
  10. #include <vector>
  11. using namespace std;
  12. #define INF 0x3f3f3f3f
  13. #define N 6
  14. int m[N + 1][N + 1];
  15. int RecursiveMatrixChain(vector<int>p, int i, int j)
  16. {
  17. if (i == j)
  18. return 0;
  19. m[i][j] = INF;
  20. for (int k = i; k <= j - 1; ++k)
  21. {
  22. int q = RecursiveMatrixChain(p, i, k) + RecursiveMatrixChain(p, k + 1, j)
  23. + p[i - 1] * p[k] * p[j];
  24. if (q < m[i][j])
  25. m[i][j] = q;
  26. }
  27. return m[i][j];
  28. }
  29. int main()
  30. {
  31. vector<int> p{ 30, 35, 15, 5, 10, 20, 25 };
  32. cout << "矩阵维度为: ";
  33. for (auto i = p.begin(); i < p.end(); ++i)
  34. cout << *i << " ";
  35. cout << endl;
  36. RecursiveMatrixChain(p, 1, 6);
  37. cout << "最小乘法次数: " << m[1][6] << endl;
  38. return 0;
  39. }

可参考本站矩阵连乘(动态规划法)和矩阵连乘(备忘录法)

本文系本人个人公众号「梦回少年」原创发布,扫一扫加关注。